For those of us who were saddened when the second of four reaction wheels failed on Kepler and the mission was ended it was a great blow. Kepler has done more in the search for exo-planets than any other mission. Since it could no longer perform the mission it was built for but still had many functional subsystems NASA started looking for a new mission, or a way to perform part of the old mission. It looks like they found it! A re=purposed Kepler Space telescope may soon start searching the sky again.
Read: Kepler Reaction Wheel Fails, May be Mission Ending
A new mission concept, dubbed K2, would continue Kepler’s search for other worlds, and introduce new opportunities to observe star clusters, young and old stars, active galaxies and supernovae.
The very body and the solar array that provides Kepler with its energy needs also pushes the spacecraft around by the pressure exerted when the photons of sunlight strike the spacecraft. Without a third wheel to help counteract the solar pressure, the spacecraft’s ultra-precise pointing capability cannot be controlled in all directions.
However, Kepler mission and Ball Aerospace engineers have developed an innovative way of recovering pointing stability by maneuvering the spacecraft so that the solar pressure is evenly distributed across the surfaces of the spacecraft.
To achieve this level of stability, the orientation of the spacecraft must be nearly parallel to its orbital path around the sun, which is slightly offset from the ecliptic, the orbital plane of Earth. The ecliptic plane defines the band of sky in which lie the constellations of the zodiac.
This technique of using the sun as the ‘third wheel’ to control pointing is currently being tested on the spacecraft and early results are already coming in. During a pointing performance test in late October, a full frame image of the space telescope’s full field of view was captured showing part of the constellation Sagittarius.
Read: Over One Thousand Exoplanets found in Two Decades
Photons of light from a distant star field were collected over a 30-minute period and produced an image quality within five percent of the primary mission image quality, which used four reaction wheels to control pointing stability. Additional testing is underway to demonstrate the ability to maintain this level of pointing control for days and weeks.
To capture the telltale signature of a distant planet as it crosses the face of its host star and temporarily blocks the amount of starlight collected by Kepler, the spacecraft must maintain pointing stability over these longer periods.
“This ‘second light’ image provides a successful first step in a process that may yet result in new observations and continued discoveries from the Kepler space telescope,” said Charlie Sobeck, Kepler deputy project manager at NASA Ames Research Center in Moffett Field, CA.
The K2 mission concept has been presented to NASA Headquarters. A decision to proceed to the 2014 Senior Review – a biannual assessment of operating missions – and propose for budget to fly K2 is expected by the end of 2013.
Kepler’s original mission, which is still in progress to fully process the wealth of data collected, is to determine what percentage of stars like the sun harbor small planets the approximate size and surface temperature of Earth. For four years, the space telescope simultaneously and continuously monitored the brightness of more than 150,000 stars, recording a measurement every 30 minutes.