Vega – Two Asteroid Belts and the Possibility of Planets

Rocky Ring of Debris Around Vega
This artist’s concept illustrates an asteroid belt around the bright star Vega.
Image credit: NASA/JPL-Caltech

(Source NASA) – Astronomers have discovered what appears to be a large asteroid belt around the star Vega, the second brightest star in northern night skies. The scientists used data from NASA’s Spitzer Space Telescope and the European Space Agency’s Herschel Space Observatory, in which NASA plays an important role.

The discovery of an asteroid belt-like band of debris around Vega makes the star similar to another observed star called Fomalhaut. The data are consistent with both stars having inner, warm belts and outer, cool belts separated by a gap. This architecture is similar to the asteroid and Kuiper belts in our own solar system.

What is maintaining the gap between the warm and cool belts around Vega and Fomalhaut? The results strongly suggest the answer is multiple planets. Our solar system’s asteroid belt, which lies between Mars and Jupiter, is maintained by the gravity of the terrestrial planets and the giant planets, and the outer Kuiper belt is sculpted by the giant planets.

“Our findings echo recent results showing multiple-planet systems are common beyond our sun,” said Kate Su, an astronomer at the Steward Observatory at the University of Arizona, Tucson. Su presented the results Tuesday at the American Astronomical Society meeting in Long Beach, Calif., and is lead author of a paper on the findings accepted for publication in the Astrophysical Journal.

Vega and Fomalhaut are similar in other ways. Both are about twice the mass of our sun and burn a hotter, bluer color in visible light. Both stars are relatively nearby, at about 25 light-years away. The stars are thought to be around 400 million years old, but Vega could be closer to its 600 millionth birthday. Fomalhaut has a single candidate planet orbiting it, Fomalhaut b, which orbits at the inner edge of its cometary belt.

The Herschel and Spitzer telescopes detected infrared light emitted by warm and cold dust in discrete bands around Vega and Fomalhaut, discovering the new asteroid belt around Vega and confirming the existence of the other belts around both stars. Comets and the collisions of rocky chunks replenish the dust in these bands. The inner belts in these systems cannot be seen in visible light because the glare of their stars outshines them.

Both the inner and outer belts contain far more material than our own asteroid and Kuiper belts. The reason is twofold: the star systems are far younger than our own, which has had hundreds of millions more years to clean house, and the systems likely formed from an initially more massive cloud of gas and dust than our solar system.

The gap between the inner and outer debris belts for Vega and Fomalhaut also proportionally corresponds to the distance between our sun’s asteroid and Kuiper belts. This distance works out to a ratio of about 1:10, with the outer belt 10 times farther from its host star than the inner belt. As for the large gap between the two belts, it is likely there are several undetected planets, Jupiter-size or smaller, creating a dust-free zone between the two belts. A good comparison star system is HR 8799, which has four known planets that sweep up the space between two similar disks of debris.

“Overall, the large gap between the warm and the cold belts is a signpost that points to multiple planets likely orbiting around Vega and Fomalhaut,” said Su.

If unseen planets do, in fact, orbit Vega and Fomalhaut, these bodies will not likely stay hidden.

“Upcoming new facilities such as NASA’s James Webb Space Telescope should be able to find the planets,” said paper co-author Karl Stapelfeldt, chief of the Exoplanets and Stellar Astrophysics Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Image credit: NASA/JPL-Caltech

Astronomers have discovered what appears to be a large asteroid belt around the bright star Vega, as illustrated here at left in brown. The ring of warm, rocky debris was detected using NASA’s Spitzer Space Telescope, and the European Space Agency’s Herschel Space Observatory, in which NASA plays an important role.

In this diagram, the Vega system, which was already known to have a cooler outer belt of comets (orange), is compared to our solar system with its asteroid and Kuiper belts. The relative size of our solar system compared to Vega is illustrated by the small drawing in the middle. On the right, our solar system is scaled up four times.

The comparison illustrates that both systems have inner and outer belts with similar proportions. The gap between the inner and outer debris belts in both systems works out to a ratio of about 1-to-10, with the outer belt 10 times farther away from its host star than the inner belt.

Astronomers think that the gap in the Vega system may be filled with planets, as is the case in our solar system.

C. Pike - KnowledgeOrb Contributor

Contributor to KnowledgeOrb

Share
Published by
C. Pike - KnowledgeOrb Contributor

Recent Posts

Rocket Fuel for Policy: Musk’s Role in the Trump Administration

A "Rea" Fake picture from the moon. Elon Musk's new gig in the Trump administration's…

4 weeks ago

American and China Race to the Moon

The race to the Moon has long been a symbol of technological prowess and national…

4 weeks ago

SpaceX Vs ULA Vs Blue Origin

DSCOVR Launch on SpaceX Falcon 9 February 11, 2015 The race for dominance in space…

1 month ago

NASA’s Best Newly Released Images of Mars June, 2024

https://youtu.be/ycPwgUI3nag NASA’s Perseverance and Curiosity rovers newly released images and pictures of Mars. Mars is…

7 months ago

NASA SLS A ROCKET FUELED BY POLITICS

https://youtu.be/KKygQhBQZnQ NASA SLS Rocket design was done by politicians as much as engineers. There is…

8 months ago

Worst Geomagnetic Storm Since 2005! 5 Earth directed CMEs!

https://youtu.be/slELcxXeLMc First G4 Geomagnetic Storm since 2005.Issue Time: 2024 May 09 1722 UTCWATCH: Geomagnetic Storm…

9 months ago