Categories: Search for LifeSpace

NASA finds Water Lakes on Europa

NASA Probe Data Show Evidence Of Liquid Water On Icy Europa

Europa Jupiter moon

WASHINGTON — Data from a NASA planetary mission have provided scientists evidence of what appears to be a body of liquid water, equal in volume to the North American Great Lakes, beneath the icy surface of Jupiter’s moon, Europa.

The data suggest there is significant exchange between Europa’s icy shell and the ocean beneath. This information could bolster arguments that Europa’s global subsurface ocean represents a potential habitat for life elsewhere in our solar system. The findings are published in the scientific journal Nature.

“The data opens up some compelling possibilities,” said Mary Voytek, director of NASA’s Astrobiology Program at agency headquarters in Washington. “However, scientists worldwide will want to take a close look at this analysis and review the data before we can fully appreciate the implication of these results.”

NASA’s Galileo spacecraft, launched by the space shuttle Atlantis in 1989 to Jupiter, produced numerous discoveries and provided scientists decades of data to analyze. Galileo studied Jupiter, which is the most massive planet in the solar system, and some of its many moons.

One of the most significant discoveries was the inference of a global salt water ocean below the surface of Europa. This ocean is deep enough to cover the whole surface of Europa and contains more liquid water than all of Earth’s oceans combined. However, being far from the sun, the ocean surface is completely frozen. Most scientists think this ice crust is tens of miles thick.

“One opinion in the scientific community has been if the ice shell is thick, that’s bad for biology. That might mean the surface isn’t communicating with the underlying ocean,” said Britney Schmidt, lead author of the paper and postdoctoral fellow at the Institute for Geophysics, University of Texas at Austin. “Now, we see evidence that it’s a thick ice shell that can mix vigorously and new evidence for giant shallow lakes. That could make Europa and its ocean more habitable.”

Schmidt and her team focused on Galileo images of two roughly circular, bumpy features on Europa’s surface called chaos terrains. Based on similar processes seen on Earth — on ice shelves and under glaciers overlaying volcanoes — they developed a four-step model to explain how the features form. The model resolves several conflicting observations. Some seemed to suggest the ice shell is thick. Others suggest it is thin.

This recent analysis shows the chaos features on Europa’s surface may be formed by mechanisms that involve significant exchange between the icy shell and the underlying lake. This provides a mechanism or model for transferring nutrients and energy between the surface and the vast global ocean already inferred to exist below the thick ice shell. This is thought to increase the potential for life there.

The study authors have good reason to believe their model is correct, based on observations of Europa from Galileo and of Earth. Still, because the inferred lakes are several miles below the surface, the only true confirmation of their presence would come from a future spacecraft mission designed to probe the ice shell. Such a mission was rated as the second highest priority flagship mission by the National Research Council’s recent Planetary Science Decadal Survey and is being studied by NASA.

“This new understanding of processes on Europa would not have been possible without the foundation of the last 20 years of observations over Earth’s ice sheets and floating ice shelves,” said Don Blankenship, a co-author and senior research scientist at the Institute for Geophysics, where he leads airborne radar studies of the planet’s ice sheets.

Galileo was the first spacecraft to directly measure Jupiter’s atmosphere with a probe and conduct long-term observations of the Jovian system. The probe was the first to fly by an asteroid and discover the moon of an asteroid. NASA extended the mission three times to take advantage of Galileo’s unique science capabilities, and it was put on a collision course into Jupiter’s atmosphere in September 2003 to eliminate any chance of impacting Europa.

The Galileo mission was managed by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., for the agency’s Science Mission Directorate.

For images and a video animation of the findings, visit:

http://tinyurl.com/csukksm

For more information about the Galileo mission, visit:

http://solarsystem.nasa.gov/galileo

C. Pike - KnowledgeOrb Contributor

Contributor to KnowledgeOrb

Share
Published by
C. Pike - KnowledgeOrb Contributor

Recent Posts

Rocket Fuel for Policy: Musk’s Role in the Trump Administration

A "Rea" Fake picture from the moon. Elon Musk's new gig in the Trump administration's…

1 month ago

American and China Race to the Moon

The race to the Moon has long been a symbol of technological prowess and national…

1 month ago

SpaceX Vs ULA Vs Blue Origin

DSCOVR Launch on SpaceX Falcon 9 February 11, 2015 The race for dominance in space…

1 month ago

NASA’s Best Newly Released Images of Mars June, 2024

https://youtu.be/ycPwgUI3nag NASA’s Perseverance and Curiosity rovers newly released images and pictures of Mars. Mars is…

7 months ago

NASA SLS A ROCKET FUELED BY POLITICS

https://youtu.be/KKygQhBQZnQ NASA SLS Rocket design was done by politicians as much as engineers. There is…

8 months ago

Worst Geomagnetic Storm Since 2005! 5 Earth directed CMEs!

https://youtu.be/slELcxXeLMc First G4 Geomagnetic Storm since 2005.Issue Time: 2024 May 09 1722 UTCWATCH: Geomagnetic Storm…

9 months ago